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Summary
After a hiatus during the 1990s, outbreaks of Brucella abortus in cattle are 
occurring more frequently in some of the western states of the United States, 
namely, Montana, Wyoming and Idaho. This increase is coincident with increasing 
brucellosis seroprevalence in elk (Cervus elaphus), which is correlated with 
elk density. Vaccines are a seductive solution, but their use in wildlife systems 
remains limited by logistical, fi nancial, and scientifi c constraints. Cattle 
vaccination is ongoing in the region. Livestock regulations, however, tend to be 
based on serological tests that test for previous exposure and available vaccines 
do not protect against seroconversion. The authors review recent ecological 
studies of brucellosis, with particular emphasis on the Greater Yellowstone Area, 
and highlight the management options and implications of this work, including the 
potential utility of habitat modifi cations and targeted hunts, as well as scavengers 
and predators. Finally, the authors discuss future research directions that will 
help us to understand and manage brucellosis in wildlife.
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Introduction
The seminal work of Anderson and May in the late 1970s 
and early 1980s integrated the fi elds of population biology, 
parasitology and epidemiology (1, 29). These studies 
were a launching pad for new fi elds of scientifi c work on 
the ecology and evolution of infectious diseases. Wildlife 
disease studies acquired additional importance following the 
emergence of several high-profi le pathogens that originated 
from a wildlife reservoir (e.g. human immunodefi ciency 
virus [HIV], severe acute respiratory syndrome [SARS] 
coronavirus, and Lyme disease [24]). Brucellosis research 
has seen a similar increase in the number of ecological 
studies, but ecological studies remain a minor component 

of the brucellosis research portfolio compared to vaccine 
development and basic immunology (Fig. 1).

In this paper, the authors review some of the insights gained 
from recent ecological work on brucellosis dynamics in 
wildlife, with an emphasis on Brucella abortus in the Greater 
Yellowstone Area (GYA), the last stronghold of brucellosis in 
the United States. Brucellosis in this region is maintained by 
infected bison and elk populations, with periodic spillover 
transmission to cattle herds (Fig. 2). Evidence for the 
importance of host ecology in brucellosis dynamics begins 
with the observation that ungulates within the Bovini tribe, 
e.g. African buffalo (Syncerus caffer), cattle and American 
bison (Bison bison), appear to maintain B. abortus at a higher 
seroprevalence than other ungulate species. This may be 
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Fig. 1
Number of brucellosis-related publications per year on vaccines, 
immunology and ecology or wildlife
Lines are drawn using a locally weighted smoothing function. Data 
were derived from PubMed searches using the key phrases ‘vaccine*’, 
‘ecolog*’ or ‘wildlife’, and ‘immune* in the title or abstract, and all papers 
had ‘brucell*’ in the title

due to physiological and immunological characteristics 
common to Bovini species, but it also coincides with the 
behavioural pattern of larger social groups and with the 
fact that these animals give birth within groups rather than 
in seclusion; these are the characteristics that facilitate 
transmission of B. abortus via direct contact with abortion 
events (the main mechanism of transmission).

Blue wildebeest (Connochaetes taurinus) and Rocky Mountain 
elk (Cervus elaphus) are two non-Bovini species that can 
also form larger social groups. Blue wildebeest have been 
recorded with a seroprevalence of 18% and form some of 
the largest aggregations of any ungulate species (41). Until 
recently, elk were not thought to be a suitable reservoir 
for brucellosis (7, 27, 39). Elk populations in North 
America have been recovering from extensive harvesting by 
European settlers in the early 1900s, and elk populations in 
many western states are now at their highest levels in over 
a century (33). Coincident with increasing elk populations, 
and concurrent with the number of brucellosis outbreaks 
in cattle (Fig. 2), brucellosis seroprevalence appears to be 
increasing in several elk populations around the GYA (12).

Available epidemiological and genetic data suggest that 
these brucellosis infections in cattle were more likely due 
to spillover transmission from elk than bison (4, 23). 
Though bison remain a potential risk to cattle, the hazing 
or culling of bison that wander out of Yellowstone National 
Park minimises spatial and temporal overlap between the 

two species, reducing brucellosis transmission risk to cattle 
(26). Elk, on the other hand, are far more numerous and 
mobile than bison in the GYA and represent a less tractable 
management challenge.

Host density 
and brucellosis transmission
The relationship between host density and parasite 
transmission is fundamental to understanding infectious 
disease dynamics and implementing effective control 
strategies. Simulation models with density-dependent 
disease transmission have been used extensively in 
theoretical and applied epidemiology and predict that 
epidemics will not occur as long as host density is less 
than some threshold (21, 25). The abundance and spatial 
distribution of many wildlife species can be affected by 
hunting pressure, artifi cial food sources, habitat quality and 
manipulation (e.g. prescribed fi re and weed removal), and 
abundance of predator or competitor species. Subsequently, 
if host density is a major driver of parasite transmission, 
then natural resource managers may have several ecological 
tools at their disposal. However, empirical support for 
the epidemiological importance of host density in disease 
transmission is mixed (5, 8, 14, 17, 35, 36).

The authors argue that brucellosis transmission is driven 
by host density at fi ne spatial scales (e.g. social groups of 
individuals within 100 m to 500 m of each other) during 
the months of January through June when brucellosis 
is mostly likely to cause abortion events. Transmission 
occurring within wintering social groups may be hard to 
detect when using broader measures of density, but it is 
nonetheless important as a management opportunity. For 
many social species, the group-size distribution does not 
vary widely over the range of population sizes (13) and 
this seems to be true of bison as well (Fig. 3a). Therefore, 
transmission may be more frequent in larger groups (local 
scale) but uncorrelated with total population size or density 
on a broad spatial scale because as the population size 
increases so does the number of groups.

In forested habitats, elk groups are relatively small and 
generally comprised of less than 30 individuals (11, 12, 
22). However, in open habitats, elk group sizes can be over 
1,000 individuals (12, 32). Elk group-size distributions 
tend to be highly right-skewed, whereby most groups 
are relatively small while a few are very large (Fig. 4). In 
addition, the largest groups appear to increase as the 
population increases, particularly in more open rangeland 
habitats (Fig. 3b). In bison and elk, individuals appear to 
interchange among groups relatively frequently (19, 20). 
With increasing movement among groups, the correlation 
between seroprevalence and group size is likely to decrease 
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Fig. 2
Hazard of a cattle outbreak per calendar year in Idaho (A), Montana (B), Wyoming (C), or summed across all three states (D)
Estimates are based on a Bayesian intrinsic conditional autoregressive model. Grey areas indicate the 95% credible intervals. Actual numbers of outbreaks 
per year are indicated as squares. For clarity, years without outbreaks are not shown. Note the Y-axis for D is not the same as A–C
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Fig. 3
The relationship between different measures of group size for bison (A) and elk (B) as a function of the total count of individuals
Median and mean group sizes are shown in dark and light grey circles, respectively. Upper 95th and 99th percentiles of group size are shown with 
dark and light grey squares, respectively. Lines are least-squares regressions. Bison data are derived from aerial fl ights from 1970 to 1997 of bison in 
Yellowstone National Park. Elk data are derived from aerial fl ight data from the Eastern Madison Valley of Montana (14). In each case, only one fl ight, 
some time between January and March each year, was used
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Fig. 4
Elk group-size distribution in February 2010 and 2011 from 
204 groups seen on aerial transects of ten Wyoming hunt areas
Arrows indicate large groups
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because individuals are infected in large groups, but then 
often move to a smaller group prior to being sampled. As 
a result, brucellosis seroprevalence may be only weakly 
correlated with either group size or population size even 
though disease transmission is driven by group size or 
density within a group. Despite these caveats, brucellosis 
seroprevalence does appear to increase with increasing elk 
density on coarse spatial scales (12, 15, 32).

At fi rst glance, this host density effect appears 
to be contradicted by the authors’ own work on 
feedgrounds in western Wyoming – 23 sites where state 
and federal wildlife managers provide supplemental hay 
to over 20,000 elk and 600 bison during winter, resulting 
in highly aggregated populations from December through 
April. At these feedgrounds, brucellosis seroprevalence 
appears uncorrelated with elk population size (14). For 
example, the National Elk Refuge (NER) has the largest 
elk population of all feedgrounds and, on average, one of 
the lowest levels of seroprevalence. The authors believe 
that this is due to an interaction between population size 
and length of the feeding season (Fig. 5a) (28). They found 
that brucellosis-induced abortions, detected by vaginal 
implant transmitters (ATS, Insanti, MI, USA), frequently 
occurred in late spring (Fig. 5b). Therefore, high elk densities 
earlier in winter at this site may be unrelated to transmission 
risk. Instead, the area under the curve of group, feedground, 
or population size during the transmission season is probably 
more important (Fig. 5a) (28). The authors found that 
feedgrounds with feeding periods extending later into spring 
had higher seroprevalence in elk (14). In that analysis, the 
end of the feeding season explained 59% of the variation in 
seroprevalence among sites and suggested that, if causal, a 
shortening of the feeding season by a month may result in a 
reduction in seroprevalence of around two-thirds.

The authors have also studied how elk–fetus contacts 
depend on elk density on feedgrounds. They used elk fetuses 

derived from a test and slaughter programme, observational 
sampling by humans and video cameras, and the novel 
technology of proximity logging devices. Elk–fetus contacts 
declined rapidly with distance from feedlines, where elk 
aggregations were at their highest levels (28). In addition, 
when the authors spread feed over larger areas, thereby 
reducing host density in a fi eld experiment, they found that 
elk–fetus contacts decreased by 80% (Fig. 6) (10). These 
results prompted managers to initiate fi eld experiments with 
truncated feeding seasons and low-density feeding regimes 
to test their effects on reducing brucellosis seroprevalence 
over time.

Scavengers and environmental 
persistence of Brucella abortus
On the Wyoming feedgrounds, managers attempt to 
reduce transmission by dispersing hay on clean snow 
and recovering aborted fetuses. Despite these and other 
management actions, seroprevalence among feedground elk 
populations has averaged 22% (37). Vertebrate scavengers 
exploit spatially and temporally predictable increases 
of domestic and free-ranging carrion (18), particularly 
during periods of cold temperatures (38) when animals 
are susceptible to nutritional stress and/or predation (42). 
In addition to brucellosis-induced abortions, several 
dozen elk may die annually on each feedground. This 
provides dependable sources of carrion for scavengers. 
Scavengers quickly removed almost all fetuses placed 
on feedground and non-feedground sites in the GYA 
(3, 9, 28).

The rate that fetuses disappear was fastest on feedgrounds 
(< 2 days on average compared to 6 days in Grand Teton 
National Park). The rates were slowest in and around 
Yellowstone National Park, where the average was 18 
days (3, 9, 28). Scavengers have not been implicated in 
transmission of brucellosis from wildlife to livestock, except 
during close confi nement under experimental conditions 
(16). Thus, the authors suspect that scavengers reduce 
brucellosis transmission by limiting the time an infectious 
fetus remains in the environment. Furthermore, different 
scavenging rates may explain how elk attending feedgrounds 
exhibit similar, or even lower, seroprevalence than some 
non-fed elk populations despite the dense aggregations 
observed on feedgrounds. As part of their management of 
elk feedgrounds, the Wyoming Game and Fish Department 
(WGFD) has recently began to protect scavengers 
(particularly coyotes and red fox) on feedgrounds, because 
they act as sustainable, no-cost, biological control agents. 
Expanding this seasonal protection to include areas adjacent 
to feedgrounds, or locations with high seroprevalence 
in non-fed elk, could reduce transmission and resulting 
seroprevalence.
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Fig. 6
Effects of feedground manipulations on elk–fetus contact rates
Feedground manipulations showed that spreading feed over larger areas 
(low density: LD) reduces the average number of elk–fetus contacts 
(within 2 m) by around 80% compared to traditional feeding (high density: 
HD) (10). During traditional feeding, most elk on the feedground are likely 
to come within 2 m of a fetus if it persists on a feedline for 2–3 days

Fig. 5
Interaction between the timing of abortion events and elk density may drive brucellosis transmission
Elk densities vary annually, but may not coincide with transmission periods (A). As a result, the interaction of density and transmission timing (i.e. the 
cross-hatched areas) is likely to drive brucellosis transmission, such that high densities early in the winter may be irrelevant. Data from 244 seropositive 
elk fi tted with vaginal implant transmitters suggest that abortions occur from February through July, with a peak in April, while normal births occur 
primarily from 15 May to 20 June (B)
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Wildlife brucellosis vaccination
Vaccines are seductive solutions to many wildlife disease 
problems (31). The authors believe, however, that the 
cost of brucellosis vaccination in wildlife is likely to be 
prohibitively high for the next 20 years, although they hope 
to be proven wrong. This pessimistic view is based upon 
several ecological, political and immunological factors:

– large and well-connected wildlife populations, such 
as elk in the GYA, are a success story of 20th Century 
wildlife management, but that success makes the delivery 
of vaccines to many individuals logistically challenging on a 
broad spatial scale

– B. abortus reservoir hosts are herbivores, which 
will complicate oral vaccine delivery in areas without 

feedgrounds. Past successes with oral vaccines for rabies 
have targeted carnivorous or omnivorous hosts (6), which 
may be more likely to be attracted to baits

– in some systems there may be more than one host species 
that is capable of independently maintaining brucellosis. 
As a result, if eradication is the goal, then it would have 
to be coordinated across all reservoir hosts. If brucellosis 
reduction is the goal then it would need to be maintained 
over time to control against spillover from alternative hosts

– multiple jurisdictions and managing agencies with 
differing mandates will confound coordination of a 
vaccination campaign. Local vaccination efforts may be 
possible for targeted populations but, as in the case of 
brucellosis reduction, they would need to be maintained 
in perpetuity or are likely to be eroded by immigrating 
infectious individuals

– the status of B. abortus in the United States as a potential 
bioterrorism threat results in a limited availability of 
approved sites to conduct captive trials

– vaccination of elk with Brucella strain 19 has been 
conducted on feedgrounds in Wyoming since 1985 with no 
effect on seroprevalence and limited effect on abortion.

A safe and effective vaccine for brucellosis in wildlife 
remains elusive (30), but an oral vaccine may be on the 
horizon (2). In their own epidemiological studies, the 
authors have observed little impact of Brucella strain 
19 vaccination on brucellosis in elk. With the exception of 
the Dell Creek feedground (operated by WGFD), juvenile 
elk at the remaining supplemental feedgrounds in Wyoming 
are vaccinated annually via biobullets. The annual coverage 
at other feedgrounds tends to include over 98% of juveniles 
(WGFD, unpublished data), but seroprevalence at Dell 
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Creek appears to be no higher than would be expected 
given its feeding season length (14).

Improved vaccines for use in cattle are more logistically 
feasible. However, vaccines are typically not as good at 
directly preventing infection and seroconversion as they 
are at reducing transmission. In elk, vaccinated individuals 
were 25% more likely to have viable calves, but there was 
no difference in the infection rate of vaccinated and control 
individuals (34). For vaccination to benefi t individual 
livestock owners, control regulations must be based on 
the potential for disease transmission rather than whether 
individual animals are seropositive, because seropositive 
fi ndings are only an indication of exposure to Brucella. 
Although differentiating between infectious and recovered 
individuals is not currently possible for a given individual, 
probabilistic statements can be made (40).

Conclusions and future research
Adaptive management is a process by which managers 
can synergise learning and management decision-making 
while learning about the system and reducing future 
uncertainty. Without an easily delivered, highly effective, 
and safe vaccine, diffi cult decisions and compromises 
are necessary to protect the open spaces that livestock 
operations require, and that wildlife conservationists and 
ranchers both value. Ecological interventions (e.g. altering 
hunting regulations, habitat manipulation, or predator and 
scavenger conservation) to manage brucellosis around the 
GYA are likely to be controversial and involve uncertain 
outcomes, but they are logistically plausible interventions 
in a system where there are no easy solutions.

Whole genome sequencing of Brucella isolates may 
allow for better estimates of the amount of transmission 
that occurs among host species. As far as the authors 
are aware, however, no one has quantitatively estimated 
cross-species transmission for a bacterial pathogen and 
this is likely to be a challenging endeavour. In the past, 
the authors have connected the trend of increasing elk 
seroprevalence with changing aggregation patterns. This 
increase might be explained, in part, by the evolution of 
a more transmissible strain of B. abortus in elk. A study 
of genetic variation in Brucella isolates across space, time, 
and host species would be informative. Additionally, 
combining serological (or culture) data with elk genetics 
would allow researchers to assign seropositive (or culture 
positive) individuals to their most likely population of 
origin, allowing researchers to estimate how much of the 
epidemic is being driven by other populations and regions. 
These estimates of connectivity could then be used in 
modelling analyses to determine how management in one 
area may affect brucellosis seroprevalence in neighbouring 
regions (12).

Despite the use of feedgrounds in western Wyoming to 
prevent elk and livestock co-mingling, several elk–livestock 
transmission events have occurred there, and in Idaho and 
Montana, during the last ten years (Fig. 2). The correlation 
between elk seroprevalence and elk density suggests that 
actions to alter elk aggregation patterns may be effective. 
Most of these management interventions, however, involve 
complicated trade-offs. Feasible alternatives in some 
Wyoming feedgrounds include shortening the length of the 
supplemental feeding season and distributing feed across a 
larger area. While a shortened feeding season may reduce 
brucellosis transmission among elk, increased contact of elk 
and cattle could be an undesired consequence. Managers 
at the WGFD are conducting these experiments on 
several feedgrounds, embracing an adaptive management 
philosophy.

Other options may be possible for reducing brucellosis 
among elk populations that do not receive supplemental 
feed during the winter. Targeted hunts later in winter in 
areas with the largest elk groups may redistribute elk, 
reducing the largest groups and total population size. 
Several areas around western Wyoming began the use of 
targeted hunts in 2011, but it is too early to determine their 
effects on brucellosis transmission. At present, the extent to 
which the largest groups drive the dynamics of brucellosis 
in elk remains unclear. However, much like efforts to control 
individual superspreaders, targeted efforts on these largest 
groups may be more effective than uniformly allocating 
efforts across all groups. Increased scavenger protection 
may also play a role in limiting the increase and spread of 
brucellosis in elk (3, 9, 28). By removing contaminated 
birthing materials from the environment, scavengers likely 
reduce both the infectiousness of that birthing event and 
the duration that it is infectious. Additionally, to reduce 
the risk of brucellosis infections in cattle, managers could 
identify areas of high risk for brucellosis transmission based 
on location data of elk and bison, and develop cattle herd 
plans to minimise temporal and spatial overlap of cattle 
in the high-risk areas. Finally, investigating alternative 
resources that drive host concentration (e.g. mineral licks) 
may further prevent disease transmission.
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Une perspective écologique sur Brucella abortus 
dans l’Ouest des États-Unis

P.C. Cross, E.J. Maichak, A. Brennan, B.M. Scurlock, J. Henningsen 
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Résumé
Après une période d’accalmie dans les années 1990, on assiste actuellement 
à une recrudescence des foyers dus à Brucella abortus dans certains États 
de l’Ouest des États-Unis, à savoir le Montana, le Wyoming et l’Idaho. Cette 
évolution s’accompagne d’une hausse de la prévalence sérologique chez le 
cerf élaphe (Cervus elaphus), proportionnelle à la densité des populations de 
cette espèce. La vaccination est une solution attirante mais sa mise en œuvre 
dans la faune sauvage est limitée par des diffi cultés logistiques, fi nancières et 
scientifi ques. La vaccination des bovins domestiques de la région est en cours. 
Les prescriptions applicables au bétail sont toutefois basées sur les résultats des 
épreuves sérologiques, qui révèlent une exposition passée, tandis que les vaccins 
disponibles n’empêchent pas la réapparition d’anticorps. Les auteurs font le point 
sur les études écologiques récentes dédiées à la brucellose, notamment celles 
conduites dans l’écosystème du Grand Yellowstone et mettent l’accent sur les 
solutions de gestion et les conclusions de ces travaux, en particulier concernant 
l’utilité potentielle d’une modifi cation des habitats et des chasses ciblées, et le 
rôle que jouent les charognards et les prédateurs. Enfi n, les auteurs évoquent 
les pistes futures de la recherche qui pourraient contribuer à améliorer la 
connaissance de la brucellose et sa gestion chez les animaux sauvages.

Mots-clés
Bison – Brucella abortus  – Cerf élaphe – Charognard – Écologie – États-Unis – 
Modifi cation de l’habitat – Vaccination – Yellowstone.

Brucella abortus en el oeste de los Estados Unidos 
desde el punto de vista ecológico

P.C. Cross, E.J. Maichak, A. Brennan, B.M. Scurlock, J. Henningsen 
& G. Luikart

Resumen
Tras una interrupción en la década de 1990, algunos de los estados occidentales 
de los Estados Unidos, a saber, Montana, Wyoming e Idaho, vienen padeciendo 
cada vez con más frecuencia brotes de Brucella abortus en el ganado vacuno. 
Este incremento coincide con una creciente seroprevalencia de la brucelosis en 
el ciervo (Cervus elaphus), que a su vez guarda relación directa con un aumento 
de la densidad de esta especie. Las vacunas son una solución atractiva, pero su 
utilización en sistemas de fauna salvaje aún está sujeta a limitaciones logísticas, 
económicas y científi cas. En la región se está procediendo actualmente a vacunar 
al ganado. La reglamentación de la ganadería, sin embargo, suele basarse en 
pruebas serológicas concebidas para detectar una exposición previa, y las 
vacunas disponibles no protegen de la seroconversión. Los autores pasan revista 
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